您选择的条件: Li, Yan
  • Aging accelerates memory extinction and impairs memory restoration in Drosophila

    分类: 生物学 >> 生物物理学 >> 生物物理、生物化学与分子生物学 提交时间: 2016-05-11

    摘要: Age-related memory impairment (AMI) is a phenomenon observed from invertebrates to human. Memory extinction is proposed to be an active inhibitory modification of memory, however, whether extinction is affected in aging animals remains to be elucidated. Employing a modified paradigm for studying memory extinction in fruit flies, we found that only the stable, but not the labile memory component was suppressed by extinction, thus effectively resulting in higher memory loss in aging flies. Strikingly, young flies were able to fully restore the stable memory component 3 h post extinction, while aging flies failed to do so. In conclusion, our findings reveal that both accelerated extinction and impaired restoration contribute to memory impairment in aging animals. (C) 2015 Elsevier Inc. All rights reserved.

  • Epithelial microRNA-9a regulates dendrite growth through Fmi-Gq signaling in Drosophila sensory neurons

    分类: 生物学 >> 生物物理学 >> 衰老生物学 提交时间: 2016-05-05

    摘要: microRNA-9 (miR-9) is highly expressed in the nervous system across species and plays essential roles in neurogenesis and axon growth; however, little is known about the mechanisms that link miR-9 with dendrite growth. Using an in vivo model of Drosophila class I dendrite arborization (da) neurons, we show that miR-9a, a Drosophila homolog of mammalian miR-9, downregulates the cadherin protein Flamingo (Fmi) thereby attenuating dendrite development in a non-cell autonomous manner. In miR-9a knockout mutants, the dendrite length of a sensory neuron ddaE was significantly increased. Intriguingly, miR-9a is specifically expressed in epithelial cells but not in neurons, thus the expression of epithelial but not neuronal Fmi is greatly elevated in miR-9a mutants. In contrast, overexpression of Fmi in the neuron resulted in a reduction in dendrite growth, suggesting that neuronal Fmi plays a suppressive role in dendrite growth, and that increased epithelial Fmi might promote dendrite growth by competitively binding to neuronal Fmi. Fmi has been proposed as a G protein-coupled receptor (GPCR), we find that neuronal G protein Gq (Gq), but not Go, may function downstream of Fmi to negatively regulate dendrite growth. Taken together, our results reveal a novel function of miR-9a in dendrite morphogenesis. Moreover, we suggest that Gq might mediate the intercellular signal of Fmi in neurons to suppress dendrite growth. Our findings provide novel insights into the complex regulatory mechanisms of microRNAs in dendrite development, and further reveal the interplay between the different components of Fmi, functioning in cadherin adhesion and GPCR signalling. (c) 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 225-237, 2016